
Achieving Linear CPU Scaling in
WireGuard with an Efficient Multi-Tunnel

Architecture
Mirco Barone

mirco.barone@studenti.polito.it

Federico Parola
federico.parola@polito.it

Fulvio Risso
fulvio.risso@polito.it

Davide Miola
davide.miola@polito.it

Agenda

1. Introduction

2. Understanding WireGuard’s architecture

3. The diagnosis

4. Circumventing the problem: threaded NAPI

5. The better solution: WireGuard Inline

6. Conclusions

2

1. Introduction

WireGuard is a modern, simple and fast secure tunnel technology that is among
the most commonly used in end-to-end and site-to-site deployment configurations.

3

A B

gateway
gw1

gateway
gw2WireGuard

1. Introduction
 The problem

4

gw1 gw2WireGuard

iperf3 TX iperf3 RX

The default implementation is incapable of fully utilizing all available resources,
penalizing throughput.

1. Introduction
 The problem

5

gw1 gw2

iperf3 TX iperf3 RX

Distributing traffic over multiple tunnels shows suboptimal scaling behavior.

1. Introduction
 The problem

6

CPU utilization of gw2 (receiver) with 8 WireGuard tunnels.

Gateway gw1

NET_RX_SOFTIRQ
Routing & WG peer

selection

WG workqueue

Packet encryption

Per-tunnel WG
kernel thread

Transmission

CPU 0

2. Understanding WireGuard’s architecture

7

…

…

pl
ai

nt
ex

t i
nb

ou
nd

 tr
af

fic

CPU 1

…

CPU n-1

ci
ph

er
te

xt
 o

ut
bo

un
d

tra
ffi

c

Peer queue

Gateway gw2

NET_RX_SOFTIRQ
Delivery to WG UDP socket

& peer identification

WG workqueue

Packet decryption

NET_RX_SOFTIRQ

Packet forwarding

CPU 0

2. Understanding WireGuard’s architecture

8

…

…

ci
ph

er
te

xt
 in

bo
un

d
tra

ffi
c

CPU 1

…

CPU n-1

pl
ai

nt
ex

t o
ut

bo
un

d
tra

ffi
c

Peer queue

3. The diagnosis

9

CPU utilization of gw2 (receiver) with 8 WireGuard tunnels.

Packet decryption

Reception of
encapsulated traffic

Forwarding of decrypted
packets

gw2

random chance

3. The diagnosis

10

Forwarding NAPI poll is equally as likely to be scheduled on any CPU core, for all
the independent tunnels.

NAPI polls for 2+ tunnels end up being scheduled on the same CPU core

NAPI polls that share a CPU core are slowed down, hence taking more time to
process the same amount of packets

Subsequently decrypted packets are more likely to find their polling function
already running, so they simply get appended to the existing queue.

Forwarding NAPI polls become monolithic

4. Circumventing the problem: threaded NAPI

11

By setting the WireGuard virtual interfaces’ threaded flag to 1, the packet
processing context is moved to a preemptible kernel thread.

> echo 1 | /sys/class/net/wg{0..n}/threaded

The Linux scheduler dynamically migrates these workers to ensure that no black
hole happens.

4. Circumventing the problem: threaded NAPI

12

~4x

5. The better solution: WireGuard Inline

13

gw1 gw2

NET_RX_SOFTIRQ

CPU 0

CPU 1

…

CPU n-1

Routing Encryption &
transmission

NET_RX_SOFTIRQ

Routing Decryption &
forwarding

CPU 0

CPU n-1

…

CPU 1

Move all of the pipeline’s functions to the softirq that first receives the packets,
minimizing cache locality and synchronization issues.

5. The better solution: WireGuard Inline

14

~2x

6. Conclusions

15

The current WireGuard architecture is incapable of sustaining today’s datacenter
bandwidths, even when distributing traffic over multiple independent tunnels.

Our Inline design solves the problem, at the cost of lower single-tunnel
throughput.

Thank you!

16

