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1.  Introduction

WireGuard is a modern, simple and fast secure tunnel technology that is among 
the most commonly used in end-to-end and site-to-site deployment configurations.
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1.  Introduction
      The problem
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gw1 gw2WireGuard

iperf3 TX iperf3 RX

The default implementation is incapable of fully utilizing all available resources, 
penalizing throughput.
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gw1 gw2

iperf3 TX iperf3 RX

Distributing traffic over multiple tunnels shows suboptimal scaling behavior.
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CPU utilization of gw2 (receiver) with 8 WireGuard tunnels.
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Gateway gw2
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3.  The diagnosis
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CPU utilization of gw2 (receiver) with 8 WireGuard tunnels.
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random chance

3.  The diagnosis
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Forwarding NAPI poll is equally as likely to be scheduled on any CPU core, for all 
the independent tunnels.

NAPI polls for 2+ tunnels end up being scheduled on the same CPU core

NAPI polls that share a CPU core are slowed down, hence taking more time to 
process the same amount of packets

Subsequently decrypted packets are more likely to find their polling function 
already running, so they simply get appended to the existing queue.

Forwarding NAPI polls become monolithic



4.  Circumventing the problem: threaded NAPI
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By setting the WireGuard virtual interfaces’ threaded flag to 1, the packet 
processing context is moved to a preemptible kernel thread.

> echo 1 | /sys/class/net/wg{0..n}/threaded

The Linux scheduler dynamically migrates these workers to ensure that no black 
hole happens.
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5.  The better solution: WireGuard Inline
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Move all of the pipeline’s functions to the softirq that first receives the packets, 
minimizing cache locality and synchronization issues.



5.  The better solution: WireGuard Inline
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6.  Conclusions

15

The current WireGuard architecture is incapable of sustaining today’s datacenter 
bandwidths, even when distributing traffic over multiple independent tunnels.

Our Inline design solves the problem, at the cost of lower single-tunnel 
throughput.



Thank you!
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